A new Approach based on Ant Colony Optimization (ACO) to Determine the Supply Chain (SC) Design for a Product Mix

نویسندگان

  • FuQing Zhao
  • JianXin Tang
  • YaHong Yang
چکیده

Manufacturing supply chain(SC) faces changing business environment and various customer demands. Pareto Ant Colony Optimisation (P-ACO) in order to obtain the non-dominated set of different SC designs was utilized as the guidance for designing manufacturing SC. PACO explores the solution space on the basis of applying the Ant Colony Optimisation algorithm and implementing more than one pheromone matrix, one for every objective. The SC design problem has been addressed by using Pareto Ant Colony Optimisation in which two objectives are minimised simultaneously. There were tested two ways in which the quantity of pheromones in the PM is incremented. In the SPM, the pheromone increment is a function of the two objectives, cost and time, while in MPM the pheromone matrix is divided into two pheromones, one for the cost and another one for the time. It could be concluded that the number of solutions do not depend on if the pheromone is split or is a function of the two variables because both method explore the same solution space. Although both methods explore the same solution space, the POS generated by every one is different. The POS that is generated when the pheromone matrix is split got solutions with lower time and cost than SMP because in the probabilistic decision rule a value of λ = 0.2 is used. It means that the ants preferred solution with a low cost instead of solutions with low time. The strategy of letting the best-so-far ant deposit pheromone over the PM accelerates the algorithm to get the optimal POS although the number of ants in the colony is small. An experimental example is used to test the algorithm and show the benefits of utilising two pheromone matrices and multiple ant colonies in SC optimisation problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms

Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximi...

متن کامل

An Ant Colony approach to forward-reverse logistics network design under demand certainty

Forward-reverse logistics network has remained a subject of intensive research over the past few years. It is of significant importance to be issued in a supply chain because it affects responsiveness of supply chains. In real world, problems are needed to be formulated. These problems usually involve objectives such as cost, quality, and customers' responsiveness and so on. To this reason, we ...

متن کامل

ACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem

The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...

متن کامل

FORCED WATER MAIN DESIGN MIXED ANT COLONY OPTIMIZATION

Most real world engineering design problems, such as cross-country water mains, include combinations of continuous, discrete, and binary value decision variables. Very often, the binary decision variables associate with the presence and/or absence of some nominated alternatives or project’s components. This study extends an existing continuous Ant Colony Optimization (ACO) algorithm to simultan...

متن کامل

A systematic approach for estimation of reservoir rock properties using Ant Colony Optimization

Optimization of reservoir parameters is an important issue in petroleum exploration and production. The Ant Colony Optimization(ACO) is a recent approach to solve discrete and continuous optimization problems. In this paper, the Ant Colony Optimization is usedas an intelligent tool to estimate reservoir rock properties. The methodology is illustrated by using a case study on shear wave velocity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012